Contribution from the Department of Chemistry, Harvard University, Cambridge, Massachusetts 02138

Molecular and Crystal Structure of Dimethyl-1,6-dicarbaclovononaborane(9)

BY T. F. KOETZLE, F. E. SCARBROUGH, AND W. N. LIPSCOMB

Received December 27, 1967

The molecule of $B_{7}H_{7}C_{2}(CH_{3})_{2}$, dimethyl-1,6-dicarbaclovononaborane(9), has C_{2v} symmetry. Distortions of the $B_{7}C_{2}$ unit are only slight from an idealized B_{9} polyhedron based upon a tricapped prism of D_{3h} symmetry. The C atoms, with attached CH₃ groups, are at two of the three apices of the tricapped prism. Cumulative charges in the six highest filled molecular orbitals give in order of increasing charge B_{8} (attached to no C atom), B_{4} (B_{5} , B_{7} , B_{9}) (attached to one C), and B_{2} (B_{3}) (attached to two C atoms). The crystal structure as determined at -40° is of symmetry $P2_{1}/a$ with eight molecules in the unit cell of parameters a = 13.59, b = 11.11, c = 12.47 Å, and $\beta = 93.19^{\circ}$. The 1883 observed X-ray reflections were refined to $R = \Sigma ||F_{0}| - |F_{0}|| - \Sigma|F_{0}| = 0.04$.

As part of a series on structures and charge distribution in carboranes and substituted carboranes, we report X-ray diffraction and molecular orbital studies on $B_1H_7C_2(CH_3)_2$. This molecule is obtained, ¹ along with $B_6H_6C_2(CH_3)_2$ and one isomer of $B_8H_8C_2(CH_3)_2$ when $B_7C_2H_{11}(CH_3)_2$ is pyrolyzed near 200° in diphenyl ether as solvent. Three types of B atoms, in the ratio 1:2:4, appear in the ¹¹B nuclear magnetic resonance spectrum¹ at 19.3 Mc. In accord with the $B_{10}H_{10}^{2-}$ assignment,² the single B atom at lowest field was assigned¹ to an apical position, and all others were assigned to the trigonal-prism part of a tricapped prism having two C atoms at the other apices. We confirm this structure, also indicated in our preliminary report,³ and give geometrical details of the molecule in the present study.

Experimental Section

Liquid $B_{7}H_{7}C_{2}(CH_{3})_{2}$ (mp -21 to -22°) was vacuum distilled into Pyrex capillaries having uniform wall thickness in amounts which yielded crystals, when grown in a stream of N₂,⁴ about 0.5–1.0 mm in all dimensions. All X-ray data were taken at a sample temperature of -30 to -45° , but repeated growth of new crystals was required at about 2-week intervals because of thermal shock during filling of the low-temperature dewar with liquid N₂. Reciprocal lattice symmetry of C_{2h} and systematic absences of h0l for h odd and 0k0 for k odd indicated that the space group is P2₁/a. Unit cell parameters of $a = 13.592 \pm$ 0.005, $b = 11.109 \pm 0.008$, $c = 12.468 \pm 0.003$ Å, and $\beta =$ 93.19 \pm 0.03° were obtained from Weissenberg photographs which had been calibrated by superposition of a powder diffraction pattern of Al. A least-squares procedure minimizing

$$\sum_{n=1}^{N} w_n (\sin^2 \theta_{\text{obsd}} - \sin^2 \theta_{\text{calcd}})^2 (4/\lambda_n^2)^2$$

was used, where the weights $w_n = 1/\sin^2 \theta_{obsd}$ and N = 52 reflections. A reasonable density of 0.967 g/cm³ was calculated from the assumption of eight molecules in the unit cell, but no observed density is available for comparison. The related but somewhat less dense compound⁵ B₇C₂H₁₁(CH₃)₂ has a density of 0.92 g/cm³. There are thus two molecules in the asymmetric unit, and no molecular symmetry is demanded by the space group.

Precession data were taken with Cu K α (Ni filter) and Mo K α

(Zr filter) radiation, and Weissenberg data were collected with Cu K α (Ni filter) radiation. The 21 levels included Hkl for $0 \leq H \leq 3$; hKl for $0 \leq K \leq 8$ except K = 3; hk0; [101] for levels 0, 1, 2, and 3; [111] for levels 0, 1, and 2; and [110] for level 0 only. It need hardly be added that the crystal grew with no preferred orientation. Of the 1883 distinct reflections (Table I) representing 42% of the Cu K α sphere, some 446 were below the observational limit on the films. Intensities on Weissenberg films were measured with an intensity scale prepared from the same substance, and intensities on precession films were recorded on a twin-beam microdensitometer. Corrections were applied for Lorentz and polarization factors and for oblique incidence of X-rays on the higher level films. Scale factors for the appropriate sets of data were calculated by least-squares procedures which minimize⁶

$$R = \sum_{\substack{h \ ij \\ i \neq j}} w_{hij} (\ln (s_i I_{hi}) - \ln (s_j I_{hj}))^2$$

where s_i is the scale factor for the *i*th set, I_{hi} is the measurement of reflection h on set i, $w_{hij} = 1/(f_{hi}^2 + f_{hj}^2)$, and f_{hi} is the estimated relative error in I_{hi} . Reflections were then assigned weights according to the function

$$w_h = \sqrt{f_{hi}} \sqrt{f_{hj}} \left(\frac{1}{s_i I_{hi}} \frac{1}{s_j I_{hj}} \right)$$

A calculation of μR from $\mu = 2.87$ cm⁻¹ for Cu K α radiation (0.46 cm⁻¹ for Mo K α radiation) for R = 1 mm for our largest crystal indicates that absorption corrections are less than 4%.

Structure Determination and Refinement

The structure was solved by application of Sayre's method⁷ with the use of a modified form of Long's program⁸ (REL) for the IBM 7094. First, the normalized structure factors

$$E_{hkl}^{2} = F_{hkl}^{2} [\epsilon \sum_{i=1}^{N} f_{i}^{2}(hkl)]^{-1}$$

were calculated for all reflections for which $\rho = (\sin^2 \theta)/\lambda^2 \leq 0.35$, where $F_{\hbar k l}^2$ has been corrected for thermal motion, $\epsilon = 2$ for 0k0 and k0l, and $\epsilon = 1$ for all other reflections in the P2₁/a space group. The sum over⁹ f_t^2 extends over the N = 192 atoms in the unit cell

⁽¹⁾ F. N. Tebbe, P. M. Garrett, D. C. Young, and M. F. Hawthorne, J. Am. Chem. Soc., 88, 609 (1966).

⁽²⁾ W. N. Lipscomb, A. R. Pitochelli, and M. F. Hawthorne, *ibid.*, **81**, 5833 (1959).

⁽³⁾ H. V. Hart and W. N. Lipscomb, *ibid.*, **89**, 4220 (1967).

⁽⁴⁾ W. N. Lipscomb, Norelco Reptr., 4, 56 (1957).

⁽⁵⁾ D. Voet and W. N. Lipscomb, Inorg. Chem., 6, 113 (1967).

^{(6) (}a) P. Simpson, Ph.D. Thesis, Harvard University, 1963;
(b) A. D. Rae, Acta Cryst., 19, 683 (1965);
(c) A. D. Rae and A. B. Blake, *ibid.*, 20, 586 (1966).

⁽⁷⁾ D. Sayre, *ibid.*, **5**, 60 (1952).

⁽⁸⁾ R. E. Long, Ph.D. Thesis, Part III, UCLA, 1965.

⁽⁹⁾ All f_i values were obtained from the "International Tables for X-ray Crystallography," Vol. 3, The Kynoch Press, Birmingham, England, 1962, p 202.

Table	Ι
-------	---

COMPARISON OF OBSERVED AND CALCULATED STRUCTURE FACTORS FOR B7H7C2(CH3)2^{a,b}

 			jie "Wichichies wiesen and wie wiesen wie	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	intissos 1888 strattestastestastestastestastestastestastestastestastestastestastestastestastestastestastestastes 1444 stitestastestastestastestastestastestastestastestastestastestastestastestastestastestastestastestastestaste 1444 stitestastestastestastestastestastestastestastestastestastestastestastestastestastestastestastestastestast
1 1 <td></td> <td></td> <td>۲۵۵ ۲۰ ۲۰ ۲۰ ۲۰ ۲۰ ۲۰ ۲۰ ۲۰ ۲۰ ۲۰ ۲۰ ۲۰ ۲۰</td> <td></td> <td>36 - 28 40 - 13 40 - 13 40 - 13 40 - 14 40 - 14 40</td>			۲۵۵ ۲۰ ۲۰ ۲۰ ۲۰ ۲۰ ۲۰ ۲۰ ۲۰ ۲۰ ۲۰ ۲۰ ۲۰ ۲۰		36 - 28 40 - 13 40 - 13 40 - 13 40 - 14 40

^a Reflections designated by an asterisk were assigned zero weight in the refinements when the values to be averaged for a given reflection differed by more than about 20%. A minus sign before F_0 indicates a "less than" observation. ^b Divide by 6.5 to place on an absolute scale with $F_{000} = 528$.

and $\langle E_{hkl}^2 \rangle$ (Table II) is normalized to 1.00 by adjustment of the scale factor. Second, the E_{hkl} , abbreviated as E_h , are ordered in decreasing size of $|E_h|\Sigma_{h'}|E_{h'}||E_{h-h'}|$, and the three largest which are linearly independent are fixed in sign in order to determine the origin. Third,

the next four reflections are given assumed signs, and each of the 2^N sets (N = 4) of assumed signs is then iterated by Sayre's equation through those reflections for which E_{hkl} is greater than some chosen value. In our first attempt, the minimum E_{hkl} was taken as 1.5

	Table 1	Ι						
Experiment	Experimental and Theoretical ^a Values of							
Norm	ALIZED STRUCT	URE FACTORS						
	Exptl	Centrosym	Noncentrosym					
$ E \rangle$	0.841	0.798	0,886					
$E^2 - 1\rangle$	0.897	0.968	0.736					
$E \geqslant 3.0, \%$	0.77	0.3						
$E \ge 2.0, \%$	3.79	5.0						

28.38^a For structures with randomly distributed atoms.

 $|E| \ge 1.0, \%$

TABLE III

32.0

	DISAGR	EEMENI :	FACTORS" DASED ON F	
Sin 0	No. of reflec- tions	R_F	Class	hki R _F
0.00-0.40	249	0.153	A11	0.150
0.40-0.50	207	0.112	H = 2N	0.147
0.50-0.60	256	0.125	H = 2N + 1	0.153
0.60-0.65	138	0.161	K = 2N	0.156
0.65-0.70	141	0.161	K = 2N + 1	0.148
0.70-0.75	99	0.154	L = 2N	0.155
0.75-0.80	92	0.184	L = 2N + 1	0.147
0.80-0.85	91	0.192	K + L = 2N	0.149
0.85-0.90	67	0.182	K + L = 2N + 1	0.152
0.90-1.00	28	0.206	L + H = 2N	0.152
			L + H = 2N + 1	0.149
			H + K = 2N	0.148
			H + K = 2N + 1	0.158
			$H + K + L = 2N^{\text{Trip}}$	0.155
			H + K + L = 2N + 1	0.146

^a $R_F = \Sigma ||F_o| - |F_c||/\Sigma |F_o| = 0.146$; $R_{wF} = [\Sigma w |F_o^2 - F_c^2|^2/\Sigma w F_o^4]^{1/2} = 0.165$, calculated excluding methyl H atoms. Including methyl H atoms, $R_F = 0.138$; $R_{wF} = 0.090$; and goodness of fit = $\Sigma w[|F_o|^2 - |F_c|^2]^2/(m-s) = 0.042$, where *m* is the number of observations and s the number of parameters being refined.

Figure 1.-The molecular structure and numbering scheme for $B_7H_7C_2(CH_3)_2$. Hydrogens are not shown for the sake of clarity. Atoms are designated as: B (2, 3, 4, 5, 6, 7, 8, 9), cage C (1, 6), methyl C (1', 6').

(193 reflections), but no set of signs gave a refinable structure. We then lowered the minimum E_{hkl} to 1.2 (326 reflections). Fourth, after each iterative process produces no more sign changes, the sign set with the highest consistency index

$$C = \frac{\langle \left| E_H \sum_{K} E_K E_{H-K} \right| \rangle}{\langle \left| E_H \right| \sum_{K} \left| E_K \right| \left| E_{H-K} \right|}$$

Figure 2.- The molecular packing of B7H7C2(CH3)2 as seen in the h0l projection for the four molecules in the lower half of the unit cell. Hydrogens are omitted for the sake of clarity. Carbons are represented as filled circles.

Figure 3.-The molecular packing of B7H7C2(CH3)2 as in Figure 2 for the four molecules in the upper half of the unit cell.

where the average is taken over all H, is most probably correct. In the iterative process,¹⁰ the newly determined signs were used immediately in the determination of other signs which were further down the list of reflections, but first the program attempted to determine the signs of reflections above on the list which

⁽¹⁰⁾ In an alternative procedure the newly determined signs were not used to determine signs until the next cycle. After the end of the first cycle for which there were no new additions to the list of signs, the program cycled through the list until no sign changes occurred. This alternative procedure yielded C values which were uniformly lower than those for the procedure described in the text.

	TABLE	IV						
	COORDINATES							
Atom	x	Y	z					
$C - 1_1$	0.3072(5)	0.1923(6)	0.2561(6)					
$B-2_1$	0.2029(7)	0.2547(7)	0.2334(7)					
B31	0.2954(6)	0.3121(7)	0.3257(7)					
B-41	0.3215(6)	0.1474(7)	0.3789(7)					
$B \rightarrow 5_1$	0.2270(6)	0.0919(7)	0.2871(8)					
$C - 6_1$	0.1803 (9)	0.3263(8)	0.3426(8)					
B-71	0.2206(7)	0.2506(7)	0.4474(7)					
B-81	0.2102(7)	0.0997(7)	0.4215(8)					
B-91	0.1271(7)	0.1953(7)	0.3542(7)					
$C - 1_{1}'$	0.3830(6)	0.1772(7)	0.1726(7)					
C-61'	0.1243(6)	0.4446(7)	0.3469(8)					
$H-2_{1}$	0.182(5)	0,291(6)	0.156(5)					
$H-3_1$	0.355(6)	0.397(7)	0.321(6)					
$H-4_1$	0.402(7)	0.105(7)	0.404(7)					
$H-5_{1}$	0.229(6)	0.004(7)	0.242(6)					
$H_{-7_{1}}$	0.219(5)	0.283(6)	0.530(5)					
$H-8_{1}$	0.188(5)	0.026(5)	0.434(5)					
$H - 9_1$	0.034(6)	0,179(6)	0.367(6)					
CH₃−H−l₁′a	0.436(8)	0.220(6)	0.199(5)					
СН₃–Н−1₁′Ъ	0.316(7)	0.141(5)	0.093(7)					
CH₃–H–1₁′c	0.426(8)	0.077(7)	0.177(6)					
CH3–H–61′a	0.139(10)	0,510(6)	0.357(6)					
СН₃−Н−6₁′Ъ	0.086(9)	0.481(7)	0.279(5)					
СН₃−Н−6₁′с	0.068 (8)	0.462(5)	0.405(6)					
$C - 1_2$	0.5241(6)	0.3097(6)	0.7232(6)					
$B-2_{2}$	0.6341(6)	0.3337(6)	0.7644(6)					
$B-3_{2}$	0.5343(7)	0.4121(7)	0.8141(7)					
$B-4_2$	0.4592(9)	0.2586(9)	0.8177(9)					
$B-5_{2}$	0.5629(8)	0.1829(7)	0.7706(8)					
$C-6_2$	0.6301(6)	0.3780(6)	0.8852(5)					
$B-7_{2}$	0.5428(9)	0.3129(8)	0.9437(8)					
$B-8_{2}$	0.5331(10)	0.1714(8)	0.8993 (10)					
$B-9_{2}$	0.6432(7)	0.2346(7)	0.8957(7)					
$C-1_{2}'$	0.4825(7)	0.3334(9)	0.6069(7)					
C62'	0.7011(9)	0.4700(6)	0.9389(7)					
$H-2_{2}$	0.689(5)	0.363(9)	0.703(5)					
H32	0.503(5)	0.509(6)	0.810(5)					
$H-4_{2}$	0.388(9)	0.241 (10)	0.818 (8)					
$H-5_{2}$	0.575(6)	0.112(7)	0.733(6)					
$H-7_{2}$	0.526(8)	0.359(10)	1.021(9)					
H82	0.502(6)	0.906(7)	0.926(6)					
$H-9_{2}$	0.719(7)	0.204(7)	0.937(7)					
CH₃−H−1₂′a	0.444 (8)	0.404(7)	0.613(6)					
CH ₃ –H–1 ₂ ′b	0.399 (8)	0.295(6)	0.632(5)					
CH₃−H−1₂′c	0.553(7)	0.357(5)	0.549(5)					
CH₂-H-6₂′a	0.758(9)	0.432(6)	0.938(7)					
$CH_3-H-6_2'b$	0.693(9)	0.469(6)	1.038(6)					
CH3-H-6,'c	0.629(8)	0.542(6)	0.925(5)					

were still undetermined. The set of signs which yielded the correct structure had the highest consistency index C = 0.63 which was reached in three cycles. The next best set had a consistency index of 0.62 and required six cycles of iteration to reach self-consistency. Not only did the starting sign set remain invariant, but our final refinements, described below, changed only one of these 326 signs.

A Fourier map computed from these 326 E values and signs yielded 22 peaks in the asymmetric unit and was readily interpretable as two independent B₇C₄ molecules. Heights ranged from 23 to 40, on an arbitrary scale on which the next highest peak was 16. These atoms gave a value of $R = \Sigma ||F_o| - |F_o||/\Sigma |F_o| = 0.32$ for all 1883 reflections before refinement, where only those below-minimum F_o 's for which $F_o > F_o$ were in-

Figure 4.—Molecular packing of entire unit cell shown in the 0kl projection. Carbons are represented as hatched circles. The upper molecules are drawn in heavy lines; the lower in light lines.

Table V Thermal Parameters, Anisotropic⁴ $(\times 10^4)$ and Isotropic^b

Atom	H 11	β_{22}	β_{83}	β_{12}	β_{13}	β_{23}
$C-1_1$	16	36	58	9	-19	-15
$B-2_1$	36	42	55	-22	16	-10
$B-3_{1}$	12	56	44	-15	26	12
$B-4_{1}$	27	29	63	-5	-13	1
$B-5_1$	24	43	70	-2	14	-10
$C-6_{1}$	14	32	49	8	3	-9
$B-7_{1}$	24	44	50	-8	14	5
$B-8_1$	30	22	73	0	-13	38
$B-9_{1}$	39	40	52	-30	-10	1
$C-1_1'$	36	94	57	1	54	-32
$C-6_1'$	26	44	101	35	-15	-10
$C - 1_2$	33	49	57	-5	14	-28
$B-2_2$	11	32	47	-3	3	1
$B-3_{2}$	30	45	49	21	10	19
$B-4_{2}$	61	76	96	-91	70	-53
$B-5_2$	43	29	89	-1	66	-31
$C-6_{2}$	35	44	39	-0	3	2
$B - 7_{2}$	71	40	64	15	6	10
$B-8_2$	94	33	111	8	96	59
$B-9_2$	47	35	56	53	26	32
$C-1_2'$	54	143	59	27	-41	-48
$C-6_2'$	60	81	93	-25	-52	- 39
Atom	ı	В		Atom		В
$H-2_{1}$		0.1	1	$H-2_{2}$		0.29
$H3_{1}$		2.3	1	$H-3_2$		1.57
$H-4_{1}$		2.6	7	$H-4_2$		6.38
$H-5_{1}$		2.4	2	$H-5_2$		2.56
$H-7_1$		0.7	6	$H-7_{2}$		6.32
H81		0.1	1	$H-8_{2}$		2.14
$H-9_1$		2.0	5	$H-9_{2}$		3.50
CH₃H-	11'a	12.2	4	CH ₃ -H-1	.2'a	16.41
CH3-H-	1 ₁ ′b	9.4	6	CH ₃ -H-1	.²′b	3.85
CH₃–H–	1 ₁ ′c	3.1	4	CH ₃ -H-1	2'c	12.90
CH ₃ -H-	61'a	1.0	0	CH3-H-6	$b_2'a$	7.84
CH ₃ -H-	61'b	12.7	7	СН3-Н-6	b₂′b	8.67
CH ₃ -H-	61'c	9.4	2	CH3-H-6	$b_2'c$	-1.40

^a Anisotropic temperature factors are calculated by the expression $\exp[-(h^2\beta_{11} + k^2\beta_{22} + l^2\beta_{35} + hk\beta_{12} + hl\beta_{13} + kl\beta_{23})]$. ^b Isotropic temperature factors are given by $\exp[-B(\sin^2\theta)/\lambda^2]$.

cluded. Position and isotropic thermal parameters on B and C were refined through three cycles of least-squares minimization of $\Sigma w^2 (k^2 |F_o|^2 - |F_c|^2)^2$, where $w = 1/F_o^2$ to yield R = 0.27. Terminal H atoms on B

	(-, /	~ /			
	β_{11}	β_{22}	β_{33}	β_{12}	ß13	β_{23}	В
Apical B	10	8	10	14	18	13	
Equatorial B	8	10	10	13	15	14	
B bonded to two C's	6	8	7	9	10	9	
Carborane C	5	7	5	8	9	8	
Methyl C	7	12	8	13	12	12	
Cage H							2.92
Methyl H							2.16

TABLE	VII	

Complete Bond Distances				
	Bond	length, Å		
Bond	Molecule 1	Molecule 2		
	Apical B-B			
B(8) - B(4)	1.72(1)	1.69(2)		
B(8) - B(5)	1.71(1)	1.68(2)		
B(8) - B(7)	1.71(1)	1,67(1)		
B(8) - B(9)	1.73(1)	1.66(2)		
B–B betwee	en B's Connected	to Both C's		
B(2)-B(3)	1.77(1)	1.75(1)		
B–B at Bas	se of Apical B Ca _l	o, 1st Type		
B(4)-B(5)	1.78(1)	1.77(1)		
B(7)-B(9)	1.78(1)	1.75(1)		
B–B at Bas	e of Apical B Cap	, 2nd Type		
B(4)-B(7)	2.01(1)	1.98(2)		
B(5)-B(9)	2.00(1)	1.94(1)		
B-	B at Base of C Ca	ıps		
B(2)-B(5)	1.95(1)	1.94(1)		
B(2)-B(9)	1.98(1)	1.97(1)		
B(3)-B(4)	1.97(1)	1.99(1)		
B(3)-B(7)	1.99(1)	1.95(1)		
B-C	B's Bonded to Or	ne C		
C(1)-B(4)	1.61(1)	1.61(1)		
C(1)-B(5)	1.62(1)	1.60(1)		
C(6)-B(7)	1.62(1)	1.60(1)		
C(6)-B(9)	1.63(1)	1.61(1)		
В-С	B's Bonded to Tw	o C's		
C(1)-B(2)	1.59(1)	1.58(1)		
C(1)-B(3)	1,60(1)	1.61(1)		
C(6)-B(2)	1.62(1)	1.59(1)		
C(6)-B(3)	1.60(1)	1.58(1)		
C-C	Cage C to Meth	yl C		
C(1)-C(1')	1.51(1)	1.55(1)		
C(6)-C(6')	1.52(1)	1.53(1)		
	B-H Apical			
B(8)–H	1.18(6)	1.00(8)		
BH	H B Bonded to On	le C		
B(4)H	1.22(9)	0.99(12)		
B(5)-H	1.13(8)	0.94(8)		
B(7)-H	1.09(7)	1.12(11)		
В(9)–Н	1.30 (8)	1.17(9)		
B–H	B Bonded to Two	o C's		
B(2)-H	1.07(6)	1.14(6)		
В(3)-Н	1.25(8)	1.16(7)		

atoms were introduced at a B–H distance of 1.1 Å on a model, and then anisotropic thermal parameters for B and C and isotropic thermal parameters for H were refined alternately to R = 0.146. A difference map from

Table	VIII

Bond	Summary ^a
------	----------------------

	Bond	Symmetry- related bonds ^b	Mean value, Å	Std caled coord dev Av ^c dev	dev from linate v, Å Max dev	Std dev of the mean, ^d Å
7	B-B	5 - 9	1.984	0.013	0.015	0.031
3	B-B	5-8, 7-8, 9-8	1.698	0.014	0.016	0.026
2	B-B		1.764	0.012	0.012	0.049
5	B-B	7-9	1.772	0.013	0.015	0.046
5	B-B	2-9, 3-4, 3-7	1.969	0.012	0.013	0.021
1	C-B	1-5, 6-7, 6-9	1.615	0.011	0.013	0.036
2	C-B	1-3, 6-2, 6-3	1.595	0.010	0.011	0.015
1'	C-C	6-6'	1.529	0.011	0.011	0.015
H,	apical B		1.093	0.067	0.075	0.090
Н,	B bonded to one C		1.119	0.091	0.123	0.120
H,	B bonded to both C's		1.154	0.069	0.082	

^{*a*} For the boron-carbon framework: average standard deviation calculated from atomic coordinates, 0.012 Å; average standard deviation of the mean for all symmetry types, 0.029 Å. ^{*b*} Assuming C_{2v} symmetry, we have averaged distances for equivalent bonds, including both molecules. ^{*c*} Average of deviations for equivalent bonds. ^{*d*} Calculated by the formula

$$\sigma = \frac{(\sum_{i=1}^{N} (D_i - \overline{D})^2)^{1/2}}{N - 1}$$

where D_i are the individual bond distances, \overline{D} is the mean distance, and N is the number of equivalent bonds.

which B, C, and H (on B) were subtracted yielded density resembling methyl H atoms at about half the height of H atoms attached to B. Introduction of these peaks and subsequent least-squares refinements gave R = 0.138 (Table III), but the thermal parameters of methyl hydrogen atoms showed considerable variation and values suggestive of disorder. A final difference electron density map showed no uninterpretable peaks higher than 0.20 electron/Å³.

Geometrical Structure

The molecule (Figure 1), properly numbered,¹¹ has H atoms extending approximately away from the molecular center on each B atom. For clarity, we show the four molecules in the lower half of the unit cell in Figure 2, and those in the upper half in Figure 3. A different projection of the whole unit cell is shown in Figure 4. The parameters of Tables IV–VI yield the bond distances and angles of Tables VII–X. We have calculated intermolecular distances between all pairs of atoms in one unit cell. The closest approaches are 2.30 Å (methyl H–cage H) and 2.60 Å (cage H–cage H). In view of the large uncertainty in methyl H positions, the packing seems reasonable.

The molecular structure of $B_7C_2H_7(CH_3)_2$ is a tricapped trigonal prism, as suggested earlier,¹ with the two C atoms and their attached methyl groups located at two of the apices. There are three types of B atoms: a five-coordinated apical B, four six-coordinated equatorial B atoms bonded to one C each, and two six-coordinated B atoms each bonded to two C atoms, all in agreement with the ¹¹B nuclear magnetic resonance results.¹ Since there are two molecules per asymmetric unit and no molecular symmetry imposed by the space group,

(11) R. Adams, Inorg. Chem., 2, 1087 (1963).

		COMPLETE BO	nd Angles		
Angle	Molecule 1	Molecule 2	Angle	Molecule 1	Molecule 2
Among Thr	ee B's All Bound to	Apical B	Angles at Bas	e of Apical B Cap 2	nd Trupp
B(0) - B(7) - B(4)	90.2(5)	90 1 (6)	$\mathbf{B}(8) - \mathbf{B}(7) = \mathbf{B}(0)$	= 0.4 (f)	
B(9) - B(5) - B(4)	90.2(0) 90.8(5)	90.9(6)	B(8) - B(9) - B(7)	59.4(0)	01.0(1) 59.6(6)
B(7) - B(9) - B(5)	89.7(6)	90.5(6)	B(8) - B(5) - B(4)	58.8(5)	58.0(0)
B(7) - B(4) - B(5)	89.2(5)	88.6(7)	B(8) - B(4) - B(5)	58.4(5)	58.1(7)
-(() - (-) - (0)	001-(0)	0010(1)	D(0) D(1) D(0)	00.1(0)	00.1 (7)
Among Three B's with C	entral B Connected	to Apical C and B	Angles at	Base of C Cap, 1st 7	Суре
B(9)-B(7)-B(3)	89.9(5)	90.5(6)	B(3)-B(7)-C(6)	51.2(4)	51.6(5)
B(7)-B(9)-B(2)	89.9(6)	89.5(6)	B(2)-B(9)-C(6)	52.1(4)	51.5(4)
B(5)-B(4)-B(3)	89.8(5)	88.9(6)	C(1)-B(4)-B(3)	51.9(4)	51.7(5)
B(4)-B(5)-B(2)	90.0(5)	90.6(5)	C(1)-B(5)-B(2)	51.8(4)	51.8(4)
A	1. Control D. Commu				
Among Inree B's wit	n Central B Connec	ted to I wo C's	Angles at .	Base of C Cap, 2nd	Гуре
B(7)-B(3)-B(2)	89.8(5)	90.1(5)	C(6)-B(7)-B(9)	57.2(4)	57.1(5)
B(9)-B(2)-B(3)	90.4 (5)	89.9(5)	C(6)-B(9)-B(7)	56.5(5)	56.7(5)
B(5)-B(2)-B(3)	90.6(5)	91.0(5)	C(1)-B(5)-B(4)	56.3(5)	56.9(5)
B(4)-B(3)-B(2)	89.6(5)	89.5(5)	C(1)-B(4)-B(5)	56.8(5)	56.4(5)
Aroun	d Apical B, 1st Typ	e	Angles at	Base of C Cap 3rd 7	Fvne
B(7) - B(8) - B(4)	72.0(5)	$72 \ 2 (6)$	C(6) - B(3) - B(7)	$52 \ 3 \ (4)$	59 5 (5)
B(9)-B(8)-B(5)	71.0(5)	71.1(7)	C(6) - B(2) - B(9)	52.8(4)	52.0(0) 52.4(4)
2(0) 2(0) 2(0)	1210 (0)	(1) (1)	C(1) - B(3) - B(4)	52, 3(4) 52, 4(4)	52.4(4)
Around	Apical B, 2nd Type	<u>e</u>	C(1) - B(2) - B(5)	53.3(4)	52.0(5)
B(7)-B(8)-B(9)	62.3(5)	63 5(7)	Q(1) D(1) D(0)	00.0(4)	00.1(0)
B(4)-B(8)-B(5)	62.8(5)	63.2(6)	Angles at 1	Base of C Cap, 4th 7	Гуре
			C(6)-B(3)-B(2)	57.2(5)	56 6 (5)
Aroun	d Cage C, 1st Type		C(6)-B(2)-B(3)	55.9(5)	56.2(5)
B(3)-C(6)-B(2)	66.9(5)	67.2(5)	C(1)-B(3)-B(2)	56.6(5)	55.8(5)
B(3)-C(1)-B(2)	67.6(5)	66.8(5)	C(1)-B(2)-B(3)	55.9(5)	57.4(5)
		× ,	T):		
Aroun	d Cage C, 2nd Type		D_{1agona}	77 + 70	
B(7)-C(6)-B(9)	66.3(5)	66.2(6)	B(9) - B(8) - B(4) B(7) - B(8) - B(5)	77.9(6)	75.7(7)
B(4)-C(1)-B(5)	00.9(5)	00.7(0)	P(1) - P(2) - P(2)	(1.2(0))	10.9(1)
Aroun	d Cage C. 3rd Type		Diagona	lly across Apical C C	Сар
B(7) = C(6) = B(3)	76 5 (5)	75 0 (6)	B(7)-C(6)-B(2)	69.5(6)	69.0(6)
B(1) = C(0) = B(3) B(0) = C(6) = B(2)	70.0(5)	76.9(0)	B(9)-C(6)-B(3)	68.6 (6)	68.4(6)
B(4) - C(1) - B(3)	75.7(5)	76.2(5)	B(4)-C(1)-B(2)	68.7(6)	68.4(7)
B(5)-C(1)-B(2)	74.9(5)	75.1(6)	B(5)-C(1)-B(3)	69.3(6)	69.6(6)
	11.0 (0)	10.1(0)			
Angles in the	e Trigonal Prism, 1s	t Type	Angles Conne	ecting Cage C and A	pical B
B(3)-B(7)-B(4)	58.9(4)	60.7(5)	C(1)-B(4)-B(8)	109.2(6)	108.1(9)
B(2)-B(9)-B(5)	58.7(4)	59.4(4)	C(1)-B(5)-B(8)	109.1(6)	109.0(7)
B(3)-B(4)-B(7)	60.0(4)	59.0(5)	C(6)-B(7)-B(8)	109.6(6)	108.7(8)
B(2)-B(5)-B(9)	60.3(4)	61.1(5)	C(6)-B(9)-B(8)	108.0(7)	109.0(7)
					_
Angles in the	Trigonal Prism, 2nd	d Type	Angles Co	onnecting Two Cage	C's
B(4)-B(3)-B(7)	61.0(4)	60.3(5)	C(1)-B(3)-C(6)	106.3(6)	105.2(6)
B(5)-B(2)-B(9)	61.0(4)	59.5(5)	C(1)-B(2)-C(6)	105.9(6)	106.3(6)
Angles Inclu	ding Methyl C's 1st	t Two	Angles Connecting	Cage C and Nonapica	al B. 1st Type
$C(\ell)$ $C(\ell)$ $D(7)$	104 E (C)	194 E (7)	C(6) - B(7) - B(4)	90 3 (5)	100 5 (6)
C(0) - C(0) - B(7)	124.0(0) 100.8(6)	124.5(7)	C(6) - B(9) - B(5)	99.0(0)	100.5(0)
C(0) - C(0) - B(9)	122.8(0) 195 4(6)	124.1(7) 196.1(7)	C(1) - B(4) - B(7)	100.2(5)	99.0(0) 99.2(7)
C(1') = C(1) = B(3)	120.4(0) 124 6(6)	120.1(7) 123 Q(8)	C(1) - B(5) - B(9)	100.2(6) 100.7(5)	101 2 (6)
$C(1) \sim C(1) \sim D(1)$	124.0(0)	120.0(3)			101.2(0)
Angles Inclu-	ding Methyl C's 2nd	ł Type	Angles Connecting C	lage C and Nonapica	l B, 2nd Type
C(6')-C(6)-B(3)	125.8(6)	124.4(6)	C(6)-B(3)-B(4)	101.9(5)	100.9(6)
C(6')-C(6)-B(2)	124.9(6)	124.5(7)	C(6)-B(2)-B(5)	101.7(6)	100.8(6)
C(1')-C(1)-B(3)	123.8(6)	123.5(7)	C(1)-B(3)-B(7)	101.4(5)	100.6(5)
C(1')-C(1)-B(2)	124.1(7)	124.5(7)	C(1)-B(2)-B(9)	102.4(6)	101.0(6)
Angles at Base	e of Apical B Cap, 1	st Type	Angles Connect	ing Apical B and No	napical B
B(8)-B(7)-B(4)	54.1(5)	54.5(6)	B(8)-B(5)-B(2)	105.1(6)	104.5(6)
B(8)-B(5)-B(9)	55.1(5)	53.8(6)	B(8)-B(9)-B(2)	102.7(6)	104.1(7)
B(8)-B(9)-B(5)	53.9(5)	55.1(6)	B(8)-B(7)-B(3)	103.4(6)	104.9(7)
B(8)-B(4)-B(7)	53.9(4)	53.3(6)	B(8)-B(4)-B(3)	104.3 (6)	102.5(7)

TABLE IX

TABLE X Angle Summary^a

		Dev calcd from								
			coordinate dev, Std d							
		Mean	de	of the						
	Symmetry-related	value,	Av	Max	mean,					
Angle	angles	deg	dev	dev	deg					
9-7-4	9-5-4, 7-9-5, 7-4-5	90,00	0.59	0.68	0.65					
97-3	7-9-2, 5-4-3, 4-5-2	89.89	0.55	0.62	0.38					
7 - 3 - 2	9-2-3, 5-2-3, 4-3-2	90.11	0.53	0.55	0.54					
7-8-4	9-8-5	71.58	0.60	0.70	0.59					
7-8-9	4-8-5	62.97	0.57	0.66	0.52					
3 - 6 - 2	3-1-2	67.13	0.51	0.52	0.24					
7-6-9	4-1-5	66.54	0.54	0.60	0.22					
763	9-6-2, 4-1-3, 5-1-2	75.69	0.54	0.61	0.61					
3-7-4	2-9-5, 3-4-7, 2-5-9	59.77	0.44	0.49	0,89					
437	5-2-9	60.47	0.45	0.50	0.56					
6'-6-7	6'-6-9, 1'-1-5, 1'-1-4	124.51	0.66	0.75	0.99					
6'6-3	6'-6-2, 1'-1-3, 1'-1-2	124.44	0.63	0.68	0.71					
8-7-4	8-5-9, 8-9-5, 8-4-7	54.21	0.52	0.61	0.63					
8-7-9	8-9-7, 8-5-4, 8-4-5	58.51	0.55	0.65	0.50					
3 - 7 - 6	2-9-6, 1-4-3, 1-5-2	51.71	0.43	0.47	0.28					
6-7-9	6-9-7, 1-5-4, 1-4-5	56.73	0.48	0.54	0.29					
6 - 3 - 7	6-2-9, 1-3-4, 1-2-5	52.60	0.44	0.48	0.45					
63-2	6-2-3, 1-3-2, 1-2-3	56.44	0.46	0.48	0.61					

^a Average of all standard deviations calculated from atomic coordinates, 0.53°; average of all standard deviations of the mean for all symmetry types, 0.54°; average maximum deviation calculated from atomic coordinates for each symmetry type, 0.58°.

we obtained two independent determinations of all bond distances and angles (Tables VII–X). Comparison of these molecules indicates that bond distances are known to within ± 0.03 Å and angles to within $\pm 0.6^{\circ}$.

It is interesting to note that the introduction of two C atoms into the cage has not greatly distorted the remaining B–B bonds from the full D_{3h} symmetry reported¹² for the isoelectronic species $B_9H_9^{2-}$. Bond B_4-B_7 is equal to B_2-B_5 , and bond B_2-B_3 is equal to B_4-B_5 to within a standard deviation. In accordance with previous observations,^{13,14} we found the shortest B–B distances to be those involving the apical B (B_4-B_8 , etc.). However, we do not observe abnormal lengthening of the B_2-B_3 distance between B atoms each joined to two C atoms. This distance is 1.76 Å, as compared to 1.89 \pm 0.01 Å in the related compound, $B_6H_8C_2$ -(CH₃)₂,¹⁴ 1.89 \pm 0.04 Å in *m*-B₁₀Br₂H₈C₂H₂,¹⁵ and 1.89 \pm 0.06 Å in *m*-B₁₀Cl₁₀C₂H₂¹⁶ for the same type of distance.

Molecular Orbital Studies

Several molecular orbital (MO) studies were carried out for $B_7H_7C_2(CH_3)_2$. The molecules as determined by X-ray diffraction correspond to C_{2v} symmetry within the standard deviations of bond lengths. Therefore, no attempt was made to idealize the molecule to C_{2v} symmetry. However, the uncertain H atom positions were adjusted to yield the following bond lengths: C-H, 1.095 Å; apical B-H, 1.210 Å; and equatorial B-H, 1.250 Å. The H positions of CH_3 groups were chosen to give a tetrahedral arrangement of bonds around the C. The complete set of adjusted orthogonalized atomic coordinates is given in Table XI.

TABLE XI Orthogonalized Coordinates^a

~~~~~	Moleo	cule 1		<i></i>	Molec	ule 2	
No.	x	У	z	No.	x	У	z
B(8)	2.5640	1.1074	5.2471	B(8)	6.6209	1.9042	11.1954
B(4)	4.1061	1.6375	4.7170	$\mathbf{B}(4)$	ō.6735	2.8734	10.1792
B(5)	2.8864	1.0203	3.5744	B(5)	7.1153	2.0315	9.5925
B(7)	2.6869	2.7841	5.5694	B(7)	6.7221	3.4764	11.7484
B(9)	1.4816	2.1694	4.4089	$\mathbf{B}(9)$	8.1201	2.6062	11.1506
B(2)	2.5961	2.8300	2.9058	B(2)	8.0869	3.7075	9.5162
B(3)	3.7892	3.4673	4.0548	$\mathbf{B}(3)$	6.6969	4.5781	10.1342
C(1)	3.9973	2.1361	3.1885	C(1)	6.6209	3.4401	9.0025
C(6)	2.2119	3.6250	4.2654	C(6)	7.9485	4.1996	11.0196
C(1')	5.0855	1.9684	2.1487	C(1')	6.1366	3.7040	7.5557
C(6')	1.4485	4.9386	4.3185	C(6')	8.8774	5.2209	11.6887
H(8)	2.2064	0.2654	6.0389	H(8)	6.0843	0.8937	11.5896
H(4)	5.2109	1,1499	5.0405	H(4)	4.4484	2.6249	10.1800
H(5)	2.9460	-0.0581	2.9450	H(5)	7.3608	0.9726	8.9750
H(7)	2.5983	3.1974	6.7459	H(7)	6.4191	4.0492	12.8150
H(9)	0.2535	1.9946	4.5638	H(9)	9.1864	2.2461	11.6947
H(2)	2.3262	$_{3,2980}$	1.7785	H(2)	8.9443	4.0644	8.6793
H(3)	4.6071	4.4111	4.0008	H(3)	6.2471	5.7434	10.0836
$H(1'a)^b$	6.0637	1.9684	2.6409	H(1'a)	5.0419	3.7040	7.5316
H(1'b)	5.0370	2.7956	1.4330	H(1'b)	6.5090	4.6767	7.2178
H(1'c)	4.9427	1.0203	1.6205	H(1'c)	6.5162	2.9179	6.8946
H(6'a)	0.7821	4.9386	5.1875	H(6'a)	9.8468	5.2209	11.1796
H(6'b)	2.1570	5.7694	4.4018	H(6'b)	9.0777	4.9523	12.7409
H(6'c)	0.8564	5.0538	3.4046	H(6'c)	8.4306	6.2184	11.6231

^a As adjusted to give an idealized model for the purposes of MO calculations. ^b H(1'a), H(1'b), etc., are the calculated CH₃ H positions.

TABLE XII

Average Net Mulliken Charge for Each Kind of Atom in the Molecule  $(C_{2y}$  Symmetry Assumed)^a

Kind (numbers)	I	II	III	IV
Apical B	-0.001	-0.105	-0.205	0.021
Equatorial B (4, 5, 7, 9)	0.355	0.156	-0.040	-0.234
B bonded to two C's	0.623	0.396	0.169	-0.127
(2, 3)				
Cage C (1, 6)	-0.472	0.288	0.163	1.024
Methyl C (1', 6')	-0.163	-0.322	-0.314	-0.378
(B)H apical	-0.226	-0.216	-0.017	-0.117
(B)H equatorial	-0.245	-0.247	-0.047	-0.115
(B)H B bonded to two C's	s - 0.243	-0.267	-0.048	-0.163
H methyl	0.049	0,082	0.105	0.130
« I, Hoffmann's extend	ed Hückel;	II, NEN	10 I, K ^{zo}	= 0.229;

III, NEMO I,  $K^{ZO} = 0.000$ ; IV, NEMO II, Boyd.

The molecular orbital methods are the extended Hückel method^{17,18} in which the Wolfsberg–Helmholz¹⁹ approximation is used, the NEMO (nonempirical molecular orbital) I method,²⁰ and the NEMO II²¹ method. These NEMO methods are based upon self-consistent field results for  $B_4H_4^{22}$  and  $C_2H_6$ ,²³ and the NEMO I method was carried out with the single-center zero-overlap constant²⁴ set equal to  $K^{ZO} = 0.229$  and

- (18) R. Hoffmann and W. N. Lipscomb, J. Chem. Phys., 36, 2179 (1962).
- (19) M. Wolfsberg and L. Helmholtz, *ibid.*, **20**, 837 (1952).
- (20) M. D. Newton, F. P. Boer, W. E. Palke, and W. N. Lipscomb, Proc. Natl. Acad. Sci. U. S., 53, 1089 (1965).
  - (21) D. B. Boyd and W. N. Lipscomb, to be submitted for publication.
  - (22) W. E. Palke and W. N. Lipscomb, J. Chem. Phys., 45, 3945 (1966).
- (23) W. E. Palke and W. N. Lipscomb, J. Am. Chem. Soc., 88, 2384 (1966).
  (24) M. D. Newton, F. P. Boer, and W. N. Lipscomb. *ibid.*, 88, 2353 (1966).

⁽¹²⁾ F. Klanberg and E. L. Muetterties, Inorg. Chem., 5, 1955 (1966).

^{(13) (}a) R. A. Jacobson and W. N. Lipscomb, J. Chem. Phys., 31, 605
(1959); (b) R. A. Jacobson and W. N. Lipscomb, J. Am. Chem. Soc., 80, 5571 (1958); (c) W. N. Lipscomb, "Boron Hydrides," W. A. Benjamin Co., New York, N. Y., 1963, p 23; (d) G. S. Pawley, Acta Cryst., 20, 631 (1966).
(14) H. V. Hart and W. N. Lipscomb, Inorg. Chem., 7, 1070 (1968).

 ^{(14) 11.} V. Halt and W. N. Lipscomb, *ibid.*, 6, 874 (1967).

⁽¹⁶⁾ J. A. Potenza and W. N. Lipscomb, Proc. Natl. Acad. Sci. U. S., 56, 1917 (1966).

⁽¹⁷⁾ F. P. Boer, M. D. Newton, and W. N. Lipscomb, *ibid.*, **52**, 890 (1964).

	TABLE XIII
FRAMEWORK CHARGES. ^a	AVERAGE NET MULLIKEN CHARGE FOR
Each Kind of Cage	E UNIT $(C_{2v}$ Symmetry Assumed) ^b

I	11	III	1V
-0.277	-0.321	-0.222	-0.096
0.111	-0.091	-0.087	-0.349
0.380	0.129	0.120	-0.290
-0.489	0.213	0.164	1.037
	1 - 0.277 0.111 0.380 - 0.489	$\begin{array}{cccc} I & II \\ -0.277 & -0.321 \\ 0.111 & -0.091 \\ 0.380 & 0.129 \\ -0.489 & 0.213 \end{array}$	$\begin{array}{cccccc} {\rm I} & {\rm II} & {\rm III} \\ -0.277 & -0.321 & -0.222 \\ 0.111 & -0.091 & -0.087 \\ 0.380 & 0.129 & 0.120 \\ -0.489 & 0.213 & 0.164 \end{array}$

^{*a*} Sum of charges on cage atom and on attached H or CH₃. ^{*b*} I, Hoffmann's extended Hückel; II, NEMO I,  $K^{ZO} = 0.229$ ; III, NEMO I,  $K^{ZO} = 0.000$ ; IV, NEMO II, Boyd.

 $K^{\text{ZO}} = 0$ . The methods and parameters are the same as those described in the preceding paper.¹⁴

The average net Mulliken charges²⁵ for each type of atom in  $B_7H_7C_2(CH_3)_2$  are summarized in Table XII for

in all cases, except for the NEMO II calculation where  $B_8$  becomes most positive, the equatorial B atoms most negative, and  $B_2$  and  $B_3$  assume an intermediate value. This method also predicts a charge of 1.024 for the cage C atoms, perhaps indicating that the method anomalously transfers electrons to  $B_2$  and  $B_3$ . As has been previously noted,²⁷ the major effect of including zerooverlap matrix elements in NEMO I calculations is to increase the number of electrons of the framework H atoms at the expense of cage B atoms. A calculation of framework charges, presented in Table XIII, produces no changes in the relative order of charges on B.

In the NEMO calculations there are 68 total orbitals. Orbital 33 is the filled orbital of highest energy (HFMO) while orbital 68 is the most stable. The extended

Cumulat	IVE	Orbital	Сна	RGES FOR	$B_7C_2H_7(C)$	H ₃ ) ₂ FROM	VARIOUS	Molecula	r Orbita	l Calcula	TIONS	
			1	2	3	4	5	6	7	8	9	10
Extended Hückel												
Highest filled MO												
Apical B	(8)	0.6	681	0.712	1.243	1.303	1.486	1.506	1.512	1.734	1.742	1.784
Equatorial B	(4)	0.5	244	0.596	0.803	0.878	0.987	1.098	1.239	1.325	1.434	1.520
B bonded to two C's	(2)	0.0	014	0.329	0.333	0.499	0.627	0.802	0.972	1.126	1.143	1.237
Lowest empty MO	. ,											
Apical B	(8)	0.4	448	0.509	0.837	0.837	0.839	1.068	1.363	1.426	1.427	1.646
Equatorial B	(4)	0.	139	0.447	0.617	0.968	1.416	1.549	1.635	1.725	1.854	2.011
B bonded to two C's	(2)	0.	197	0.628	0.710	0.986	1.038	1.555	1.672	1.781	2.068	2.174
NEMO $K^{zo} = 0.000$												
Highest filled MO												
Apical B	(8)	0.	341	0.572	0.761	0.980	1.156	1.249	1.277	1.327	1.416	1.510
Equatorial B	(4)	0.	116	0.296	0.396	0.447	0.633	0.655	0.893	1.075	1.210	1.241
B bonded to two C's	(2)	0.	123	0.208	0.370	0.393	0.456	0.601	0.647	0.942	1.077	1.146
Lowest empty MO												
Apical B	(8)	0.	419	0.702	0.797	0.812	0.833	1.042	1.219	1.277	1.408	1.432
Equatorial B	(4)	0.	120	0.507	0.509	0.823	1.269	1.343	1.485	1.614	1.811	1.887
B bonded to two C's	3 (2)	0.	128	0.239	0.544	0.789	0.827	1.292	1.356	1.652	1.881	2.021
NEMO $K^{zo} = 0.229$												
Highest Filled MO												
Apical B	(8)	0.	355	0.537	0.708	0.995	1.123	1.183	1.307	1.360	1.368	1.446
Equatorial B	(4)	0.	115	0.245	0.376	0.425	0.587	0.700	0.864	0.965	1.103	1.130
B bonded to two C's	s(2)	0.	115	0.208	0.298	0.359	0.429	0.517	0.829	0.930	0.985	1.067
Lowest empty MO												
Apical B	(8)	0.	395	0.670	0.839	0.842	0.871	1.074	1.193	1.198	1.200	1.203
Equatorial B	(4)	0.	135	0.558	0.563	0.881	1.276	1.351	1.435	1.498	1.558	1.669
B bonded to two C's	s (2)	0.	151	0.336	0.644	0.947	1.030	1.435	1.512	1.554	1.714	1.744
NEMO II, Boyd												
Highest filled MO												
Apical B	(8)	0.	430	0.786	0.796	0.865	1.092	1.226	1.259	1.263	1.268	1.341
Equatorial B	(4)	0.	163	0.468	0.555	0.796	1.047	1.163	1.182	1.191	1.234	1.292
B bonded to two C's	s(2)	0.	092	0.117	0.404	0.668	0.949	1.135	1.271	1.553	1.567	1.631
Lowest empty MO												
Apical B	(8)	0.	501	0.622	0.710	0.726	0.963	1.075	1.421	1.569	1.641	1.682
Equatorial B	(4)	-0.	029	0.057	0.291	0.484	0.786	0.987	1.237	1.326	1.431	1.632
B bonded to two C'	s(2)	<b>—</b> 0.	023	0.179	0.258	0.282	0.374	0.518	0.571	0.773	0.913	0.976

TADLE XIV

^a Cumulative charges are given in units of electrons assuming two electrons per atomic orbital. These charges do not represent a net charge since no core charge has been subtracted.

the four MO calculations. From studies of the more symmetrical  $B_8C_2H_{10}$ ,²⁶ it has been predicted that the most negative B atoms will be those bonded to no C atoms, followed by B atoms bonded to one C, with B atoms bonded to two C's being least negative. Our charges follow this order,  $B_8 < B_4$ ,  $B_5$ ,  $B_7$ ,  $B_9 < B_2$ ,  $B_8$ ,

(25) R. S. Mulliken, J. Chem. Phys., 23, 1833 (1955).

(26) F. P. Boer, J. A. Potenza, and W. N. Lipscomb, *Inorg. Chem.*, 5, 1301 (1966).

Hückel method does not explicitly consider 1s orbitals for C and B. Therefore, there are 57 total orbitals; orbital 33 again is the highest filled molecular orbital with orbital 57 the most stable. Filled molecular orbitals with the highest energy are expected to be the most polarizable, and therefore might dominate in electro-

(27) F. P. Boer, M. D. Newton, and W. N. Lipscomb, J. Am. Chem. Soc., 88, 2361 (1966).

CUMULATIVE FI	RAMEWORK C	HARGES F	OR $B_7C_2H_7$	$(CH_3)_2$ FRC	OM VARIOU	S MOLECU	lar Orbit	AL CALCUI	ATIONS	
	1	2	3	4	5	6	7	8	9	10
Extended Hückel										
Highest filled MO										
Apical B–H	0.681	0.734	1.265	1.333	1.646	1.681	1.688	2.039	2.047	2.117
Equatorial B–H	0.259	0.614	0.851	0.958	1.067	1.202	1.431	1.577	1.750	1.907
B–H bonded to two C's	0.014	0.335	0.348	0.518	0.663	0.846	1.155	1.415	1.433	1.595
Lowest empty MO										
Apical B–H	0.448	0.512	0.840	0.840	0.842	1.072	1.373	1.467	1.468	1.688
Equatorial B–H	0.141	0.449	0.620	0.971	1.419	1.554	1.662	1.753	1.884	2.041
B–H bonded to two C's	0.197	0.628	0.710	0.986	1.038	1.555	1.680	1.841	2.126	2.242
NEMO I, $K^{zo} = 0.000$										
Highest filled MO										
Apical B-H	0.341	0.689	1.050	1.374	1.561	1.697	1.728	1.796	2.052	2.263
Equatorial B–H	0.126	0.354	0.468	0.678	0.881	0.924	1.366	1.607	1.759	1.822
B–H bonded to two C's	0.123	0.213	0.376	0.425	0.488	0.771	0.826	1.524	1.659	1.795
Lowest empty MO										
Apical B–H	0.419	0.728	0.843	0.859	0.883	1.109	1.538	1.664	1.916	1.944
Equatorial B-H	0.133	0.538	0.544	0.860	1.286	1.362	1.653	1.933	2.287	2.368
B–H bonded to two C's	0.134	0.250	0.569	0.821	0.859	1.324	1.409	1.978	2.396	2.667
NEMO I, $K^{zo} = 0.229$										
Highest filled MO										
Apical B–H	0.355	0.606	0.803	1.452	1.620	1.684	1.992	2.154	2.163	2.376
Equatorial B–H	0.125	0.314	0.605	0.740	0.912	1.182	1.391	1.496	1.773	1.828
B–H bonded to two C's	0.115	0.218	0.329	0.444	0.515	0.604	1.452	1.651	1.781	1.891
Lowest empty MO										
B-H apical	0.395	0.687	0.866	0.870	0.899	1.106	1.385	1.390	1,394	1.398
Equatorial B–H	0.145	0.570	0.579	0.897	1.295	1.374	1.485	1.548	1.618	1.729
B–H bonded to two C's	0.155	0.340	0.648	0.951	1.035	1.444	1.535	1.580	1.751	1.789
NEMO II, Boyd										
Highest filled MO										
Apical B-H	0.430	0.787	0.799	0.880	1.122	1.320	1.354	1.364	1.369	1.516
Equatorial B–H	0.166	0.596	0.700	0.942	1.211	1.327	1.347	1.362	1.405	1.537
B–H bonded to two C's	0.092	0.129	0.416	0.694	0.980	1.196	1.502	2.187	2.217	2.323
Lowest empty MO										
Apical B-H	0.501	0.623	0.714	0.746	0. <b>98</b> 7	1.099	1.450	1.723	1.799	1.841
Equatorial B–H	0.083	0.200	0.448	0.640	0.951	1.162	1.486	1.576	1.685	1.899
B–H bonded to two C's	0.003	0.205	0.284	0.328	0.423	0.582	0.635	0.837	0.979	1.046

 TABLE XV

 CUMULATIVE FRAMEWORK CHARGES FOR B-CoHr(CHo)> FROM VARIOUS MOLECULAR ORBITAL CALCULATION

philic or nucleophilic reactions. Table XIV shows the cumulative orbital charge for each type of B starting with the HFMO and moving in the direction of more stable orbitals. Also shown is the subtotal cumulative charge for the empty orbitals of lowest energy (LEMO) moving toward less stable orbitals. No significantly new trends are seen in the relative orders of these partial charges, except in the results from NEMO II, where for the first six HFMO's the cumulative charges (disregarding the sign of the electron) are in the expected order  $B_8 > B_4$ ,  $B_5$ ,  $B_7$ ,  $B_9 > B_2$ ,  $B_3$ , in agreement with the results from the other methods, but if more than six MO's are included, the order for the NEMO II method reverts to the anomalous order observed in the total Mulliken charges calculated by this method. No new effects are observed from the cumulative framework charges (Table XV).

In summary, we are most inclined to accept the more

thoroughly tried methods, the extended Hückel and NEMO I methods. However, all three methods are in agreement when the most polarizable orbitals are considered, and the resulting order of increasing charge (most negative)  $B_{\epsilon} < B_4$  ( $B_5$ ,  $B_6$ ,  $B_7$ )  $< B_2$  ( $B_3$ ) (most positive) is in agreement with the simple inductive rule²⁶ that the order from most negative to most positive is  $B_8$  (two C neighbors),  $B_4$  ( $B_5$ ,  $B_6$ ,  $B_7$ ) (one C neighbor),  $B_2$  ( $B_3$ ) (no C neighbors).

Acknowledgment.—We wish to thank M. F. Hawthorne for the sample, G. N. Reeke for his help in adapting the CRVRM crystallographic computing system of R. E. Marsh and G. N. Reeke to the IBM 7094 at Harvard, D. B. Boyd for help with the NEMO II program, the Office of Naval Research for support, and the National Institutes of Health for fellowships to T. F. K. and to F. E. S.